翻訳と辞書
Words near each other
・ Model
・ Model (art)
・ Model (band)
・ Model (people)
・ Model (surname)
・ Model (TV series)
・ Model 1
・ Model 10
・ Model 102 telephone
・ Modal dispersion
・ Modal fictionalism
・ Modal frame
・ Modal haplotype
・ Modal jazz
・ Modal logic
Modal matrix
・ Modal operator
・ Modal particle
・ Modal property
・ Modal realism
・ Modal scope fallacy
・ Modal share
・ Modal Soul
・ Modal Soul Classics
・ Modal Soul Classics II
・ Modal testing
・ Modal verb
・ Modal voice
・ Modal window
・ Modal μ-calculus


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Modal matrix : ウィキペディア英語版
Modal matrix
In linear algebra, the modal matrix is used in the diagonalization process involving eigenvalues and eigenvectors.
Specifically the modal matrix M for the matrix A is the ''n'' × ''n'' matrix formed with the eigenvectors of A as columns in M. It is utilized in the similarity transformation
: D = M^AM,
where D is an ''n'' × ''n'' diagonal matrix with the eigenvalues of A on the main diagonal of D and zeros elsewhere. The matrix D is called the spectral matrix for A. The eigenvalues must appear left to right, top to bottom in the same order as their corresponding eigenvectors are arranged left to right in M.
== Example ==
The matrix
:A = \begin
3 & 2 & 0 \\
2 & 0 & 0 \\
1 & 0 & 2
\end
has eigenvalues and corresponding eigenvectors
: \lambda_1 = -1, \quad \, \bold b_1 = \left( -3, 6, 1 \right) ,
: \lambda_2 = 2, \qquad \bold b_2 = \left( 0, 0, 1 \right) ,
: \lambda_3 = 4, \qquad \bold b_3 = \left( 2, 1, 1 \right) .
A diagonal matrix D, similar to A is
:D = \begin
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end.
One possible choice for an invertible matrix M such that D = M^AM, is
:M = \begin
-3 & 0 & 2 \\
6 & 0 & 1 \\
1 & 1 & 1
\end.
Note that since eigenvectors themselves are not unique, and since the columns of both M and D may be interchanged, it follows that both M and D are not unique.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Modal matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.